Home
Class 11
MATHS
Find the coordinates of the centre of th...

Find the coordinates of the centre of the circle
`r = A cos theta + B sin theta `

Text Solution

AI Generated Solution

The correct Answer is:
To find the coordinates of the center of the circle given by the equation \( r = A \cos \theta + B \sin \theta \), we will follow these steps: ### Step 1: Rewrite the equation in a standard form The given equation is in polar coordinates. We need to convert it into a form that allows us to identify the center and radius of the circle. The standard form of a circle in polar coordinates is: \[ r^2 - 2r r_0 \cos(\theta - \alpha) = r_0^2 \] where \( (r_0, \alpha) \) are the polar coordinates of the center. ### Step 2: Multiply both sides by \( r \) To manipulate the equation, we multiply both sides by \( r \): \[ r^2 = A r \cos \theta + B r \sin \theta \] ### Step 3: Rearranging the equation Rearranging gives: \[ r^2 - A r \cos \theta - B r \sin \theta = 0 \] ### Step 4: Identify \( r_0 \) and \( \alpha \) To match the standard form, we need to express the equation in terms of \( r_0 \) and \( \alpha \). We can set: \[ r_0 = \frac{1}{2} \sqrt{A^2 + B^2} \] and we can find \( \alpha \) using: \[ \cos \alpha = \frac{A}{\sqrt{A^2 + B^2}}, \quad \sin \alpha = \frac{B}{\sqrt{A^2 + B^2}} \] Thus, \( \tan \alpha = \frac{B}{A} \). ### Step 5: Write the coordinates of the center The coordinates of the center of the circle in polar coordinates are: \[ (r_0, \alpha) = \left(\frac{1}{2} \sqrt{A^2 + B^2}, \tan^{-1} \left(\frac{B}{A}\right)\right) \] ### Final Answer The coordinates of the center of the circle are: \[ \left(\frac{1}{2} \sqrt{A^2 + B^2}, \tan^{-1} \left(\frac{B}{A}\right)\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The centre of the circle,r^(2)=2-4r cos theta+6r sin theta is

The centre of the circle x+2+3 cos theta, y=3 sin theta-1 , is

Find the centre and radius of the circles : 1/2 (x^2 + y^2) + x cos theta + y sin theta - 4 = 0

If the coordinates of a variable point P be (cos theta + sin theta, sin theta - cos theta) , where theta is a variable quantity, find the locus of P .

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

If the coordinates of a variable point P be (a cos theta, b sin theta) , where theta is a variable quantity, find the locus of P .

If the coordinates of a variable point P are (a cos theta,b sin theta), where theta is a variable quantity,then find the locus of P.

Find the centre and the radius of the circles x^(2) + y^(2) + 2x sin theta + 2 y cos theta - 8 = 0

The radius of the circle r^(2)-2sqrt(2r) (cos theta + sin theta)-5=0 , is