Home
Class 11
MATHS
Find the condition that the straight lin...

Find the condition that the straight line
`(1)/(r ) = a cos theta + b sin theta `
may touch the circle ` r =2 cos theta `

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2=0 if

Find the equation of the straight line through (a cos theta, b sin theta) perpendicular to the line x/(a cos theta)+ y/(b sin theta) = 1 .

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2x=0, if

The line (x-1) cos theta + (y-1) sin theta =1, for all values of theta touches the circle

Show that the point (x, y) , where x=a+r cos theta, y = b + r sin theta , lies on a circle for all values of theta .

If a cos theta-b sin theta=c, then find the value of a sin theta+b cos theta

If a cos theta-b sin theta=c, then find the value of a sin theta+b cos theta

If x = r cos theta, y = r sin theta, r =a(1+cos theta) then find (dy)/(dx)

For different values of theta, the locus of the point of intersection of the straight lines x sin theta-y(cos theta-1)=a sin theta and x sin theta-y(cos theta+1)+a sin theta=0 represents

The equation of the locus of the point of intersection of the straight lines x sin theta+(1-cos theta)y=a sin theta and x sin theta-(1-cos theta)y+a sin theta=0 is