Home
Class 11
MATHS
Prove that the straight line y = m.x wi...

Prove that the straight line y = m.x will touch the circle
` x^(2) + 2xy cos omega + y^(2) + 2gx + 2 fy + c = 0 `
if ` ( g + fm) ^(2) = c ( 1 + 2m cos omega + m^(2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2=0 if

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2x=0, if

Prove that the straight line y=mx+2c sqrt(-m),m in R, always touches the hyperbola xy=c^(2)

If the origin lies inside the circle x^(2) + y^(2) + 2gx + 2fy + c = 0 , then

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

What is the length of the intercept made on the x-axis by the circle x^(2) +y^(2) + 2gx + 2fy + c = 0 ?

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all reacl values of m.

If circles x^(2) + y^(2) + 2gx + 2fy + c = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - c =