Home
Class 11
MATHS
Find the locus of the middle points of c...

Find the locus of the middle points of chords of the circle `x^(2) + y^(2) = a^(2)` Which subtend a right angle at the point (c, 0)

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the midpoints of the chords of the circle \(x^2 + y^2 = a^2\) that subtend a right angle at the point \((c, 0)\), we can follow these steps: ### Step 1: Define the Circle and Points The given circle is defined by the equation: \[ x^2 + y^2 = a^2 \] Let \(P(h, k)\) be the midpoint of a chord \(AB\) of the circle that subtends a right angle at the point \(C(c, 0)\). ### Step 2: Use the Midpoint Formula The coordinates of points \(A\) and \(B\) on the circle can be represented parametrically as: \[ A = (a \cos \theta, a \sin \theta) \quad \text{and} \quad B = (a \cos \phi, a \sin \phi) \] The midpoint \(P(h, k)\) of the chord \(AB\) is given by: \[ h = \frac{a \cos \theta + a \cos \phi}{2}, \quad k = \frac{a \sin \theta + a \sin \phi}{2} \] ### Step 3: Condition for Right Angle For the chord \(AB\) to subtend a right angle at point \(C(c, 0)\), the slopes of lines \(CA\) and \(CB\) must satisfy the condition: \[ m_{CA} \cdot m_{CB} = -1 \] Calculating the slopes: \[ m_{CA} = \frac{a \sin \theta - 0}{a \cos \theta - c} = \frac{a \sin \theta}{a \cos \theta - c} \] \[ m_{CB} = \frac{a \sin \phi - 0}{a \cos \phi - c} = \frac{a \sin \phi}{a \cos \phi - c} \] Thus, we have: \[ \frac{a \sin \theta}{a \cos \theta - c} \cdot \frac{a \sin \phi}{a \cos \phi - c} = -1 \] ### Step 4: Substitute and Simplify Cross-multiplying gives: \[ a^2 \sin \theta \sin \phi = -(a \cos \theta - c)(a \cos \phi - c) \] Expanding the right-hand side: \[ a^2 \sin \theta \sin \phi = -a^2 \cos \theta \cos \phi + ac(\cos \theta + \cos \phi) - c^2 \] ### Step 5: Use Trigonometric Identities Using the identities \(\sin \theta \sin \phi = \frac{1}{2}(\cos(\theta - \phi) - \cos(\theta + \phi))\) and \(\cos \theta \cos \phi = \frac{1}{2}(\cos(\theta + \phi) + \cos(\theta - \phi))\), we can express the equation in terms of \(h\) and \(k\). ### Step 6: Rearranging After substituting \(h\) and \(k\) back into the equation, we can rearrange to express it as: \[ 2h^2 + 2k^2 + c^2 - a^2 - 2hc = 0 \] This can be rearranged to: \[ 2h^2 + 2k^2 - 2hc + (c^2 - a^2) = 0 \] ### Step 7: Final Form To express this in a standard form, we can complete the square: \[ 2(h^2 - hc) + 2k^2 = a^2 - c^2 \] Dividing by 2 gives: \[ (h - \frac{c}{2})^2 + k^2 = \frac{a^2 - c^2}{2} \] ### Conclusion The locus of the midpoints of the chords of the circle that subtend a right angle at the point \((c, 0)\) is a circle centered at \((\frac{c}{2}, 0)\) with a radius of \(\sqrt{\frac{a^2 - c^2}{2}}\).
Promotional Banner