Home
Class 11
MATHS
The polar of P with respect to the circl...

The polar of P with respect to the circle ` x^(2) + y^(2) = a^(2)` touches the circle ` ( x - alpha) ^(2) + ( y - beta )^(2) = b^(2)` , prove that its locus is the curve given by the equation `(alpha x + beta y - a^(2))^(2) = b^(2) ( x^(2) + y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the polar of a point (p,q) with respect to the circle x^(2)+y^(2)=a^(2) touches the circle (x-c)^(2)+(y-d)^(2)=b^(2), then

If the chord of contact of tangents from a point (x_(1),y_(1)) to the circle x^(2)+y^(2)=a^(2) touches the circle (x-a)^(2)+y^(2)=a^(2), then the locus of (x_(1),y_(1)) is

The line x sin alpha - y cos alpha =a touches the circle x ^(2) +y ^(2) =a ^(2), then,

Chords of the circle x^(2)+y^(2)=a^(2) toches the hyperbola x^(2)/a^(2)-y^(2)//b^(2)=1 . Prove that locus of their middle point is the curve (x^2 +y^2)^2=a^(2)x^(2)-b^(2)y^(2)

If the polar with respect to y^(2)=4ax touches the ellipse (x^(2))/(alpha^(2))+(y^(2))/(beta^(2))=1, the locus of its pole is

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

If the chord of contact of the tangents from the point (alpha, beta) to the circle x^(2)+y^(2)=r_(1)^(2) is a tangent to the circle (x-a)^(2)+(y-b)^(2)=r_(2)^(2) , then