Home
Class 12
MATHS
If x^2=a^(sin^(-1)t) & y^2=a^(cos^(-1)t)...

If `x^2=a^(sin^(-1)t)` & `y^2=a^(cos^(-1)t)` , then `dy/dx=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a^(sin^(-1))t,y=a^(cos^(-1))t, show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos^(-1)t)) show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^sin^((-1)t)) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x .

For t in (0,1), let x= sqrt( 2 ^(sin^(-1)(t))) and y=sqrt(2 ^(cos-1)t), then 1+ ((dy)/(dx))^(2) equals :

If x=a^(sqrt(sin-1)t) and y=a^(sqrt(cos-1)t), then show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^(sin-1)t),y=sqrt(a^(cos-1)t) then show that (dy)/(dx)=-(y)/(x)

If x=sin^(-1)(3t-4t^(3)) and y=cos^(-1)sqrt(1-t^(2)) then (dy)/(dx)=

If x=a(t-sin t) and y=a(1+cos t) then (dy)/(dx)=