Home
Class 12
MATHS
int1^2 e^(x^2)2xdx...

`int_1^2 e^(x^2)2x`dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of the integral int_1^2e^(x^2)dx is alpha , then the value of int_e^(e^4)sqrt(lnx)dx is:

If int_1^2e^(x^2)dx=a ,t h e nint_e^(e^4)sqrt(1n x)dx is equal to (a) 2e^4-2e-a (b) 2e^4-e-a (c) 2e^4-e-2a (d) e^4-e-a

If int_1^2e^(x^2)dx=a ,t h e nint_e^(e^4)sqrt(1n x)dx is equal to (a) 2e^4-2e-a (b) 2e^4-e-a (c) 2e^4-e-2a (d) e^4-e-a

int_0^1 x^2 e^(2x) dx

prove it 2e^(-1/4) < int_0^2e^(x^2-x)dx < 2e^2

int_(-1)^(2) e^(-x)dx

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is:

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

If int_0^1e^ (-x^2) dx=a , then find the value of int_0^1x^2e^ (-x^2) dx in terms of a .

If int_0^1e^-x^2dx=a , then find the value of int_0^1x^2e^-x^2dx in terms of a .