Home
Class 7
MATHS
(1/sqrt2)/((2/sqrt3)+(2/sqrt3))=...

`(1/sqrt2)/((2/sqrt3)+(2/sqrt3))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y), passing through origin and touching the circle C externally, then the radius of T is equal to (1) (sqrt(3))/(sqrt(2)) (2) (sqrt(3))/2 (3) 1/2 (3) 1/4

Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y), passing through origin and touching the circle C externally, then the radius of T is equal to (1) (sqrt(3))/(sqrt(2)) (2) (sqrt(3))/2 (3) 1/2 (3) 1/4

If a =( 4sqrt(6))/(sqrt(2)+sqrt(3)) then the value of (a+2sqrt(2))/(a-2sqrt(2))+(a+2sqrt(3))/(a-2sqrt(3))

Show that : (3sqrt(2)-2sqrt(3))/(3sqrt(2)+2sqrt(3))+(2sqrt(3))/(sqrt(3)-sqrt(2))=11

Find the sum (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+.......... upto 99 terms.

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

If sqrt(3) = 1.73 find the value of : (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)-(sqrt(3)+1)/(sqrt(3)-1) .

Find the value of: 1/(1+sqrt2)+1/(sqrt2+sqrt3)+1/(sqrt3+sqrt4)+...1/(sqrt99+sqrt100)

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals