Home
Class 12
MATHS
lim(x rarr1)(n sqrt(x)-1)/(m sqrt(x)-1)...

`lim_(x rarr1)(n sqrt(x)-1)/(m sqrt(x)-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(sqrt(x)+3)

If f(1)=1,f'(1)=2, then write the value of (lim)_(x rarr1)(sqrt(f(x))-1)/(sqrt(x)-1)

If f(1)=1,f'(1)=2 then lim_(x rarr1)(sqrt(f(x)-1))/(sqrt(x)-1) is equal to

lim_(x rarr1)(x^(2)-sqrt(x))/(sqrt(x)-1)

lim_(x rarr0)(sqrt(x+1)-1)/(x)

lim_(x rarr0)(sqrt(x+1)-1)/(x)

lim_(x rarr 1)(1-sqrt(x))/(1 + sqrt(x))

3) lim_(x rarr1)(x^(4)-sqrt(x))/(sqrt(x)-1)

lim_(x rarr1)(x^(2)-sqrt(x))/(sqrt(x-1))

lim_(x rarr1)(sqrt(7x+2)-3)/(sqrt(5x-1)-sqrt(6x-2))