Home
Class 12
MATHS
If x^(P)y^(q)=(x+y)^(p+q) prove that (d...

If `x^(P)y^(q)`=`(x+y)^(p+q)` prove that ` (dy)/(dx)`=`(y)/(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)

If x^(13)y^7=(x+y)^(20),p rov et h a t(dy)/(dx)=y/xdot

If sec((x+y)/(x-y))=a , prove that (dy)/(dx)=y/x .

If y= (x)/( x+a) , prove that x (dy)/( dx) = y(1-y) .

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x^y. y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

If (x-y) \ e^(x/(x-y))=a , prove that y(dy)/(dx)+x=2y .

If (x-y) \ e^(x/(x-y))=a , prove that y(dy)/(dx)+x=2y .