Home
Class 11
MATHS
change into cartesian form cos(pi/4)+i s...

change into cartesian form `cos(pi/4)+i sin(-(pi)/(4))`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos(pi/4-A)-sin(pi/4+A)=0

If z=cos((pi)/(4))+i sin((pi)/(6)), then

cos((3pi)/4+x)-sin(pi/4-x)=?

Write the modulus and principal arguments of the complex no.z=4(cos((pi)/(4))+i sin((pi)/(4)))

.Convert polar co-ordinate into cartesian co-ordinates. (2,(3 pi)/(4)), (ii) (1,(pi)/(2)

Find the value of expression ((cos pi)/(2)+i sin((pi)/(2)))(cos((pi)/(2^(2)))+i sin((pi)/(2^(2))))......oo

If the polar form of a complex number is sqrt(2)(cos(-(3 pi)/(4))+i sin(-(3 pi)/(4)) the real and imaginary parts in the cartesian form respectively,are a).-1 and -1 b)-1 and 0 c).0 and -1 d)-1 and 1

The least positive integer n such that [{:(cos""(pi)/(4), sin""(pi)/(4)) ,(- sin ""(pi)/(4) , cos ""(pi)/(4)):}]^(n) is an identity matrix of order 2 is

sin {cos ((cos ^ (- 1) (3 pi)) / (4))}

sin (pi/2) = 2 sin(pi/4) cos (pi/4)