Home
Class 12
MATHS
Let vec a,vec b and vec C are three unit...

Let `vec a,vec b` and `vec C` are three unit vectors in a plane such that they are equally inclined to each other,then the value of `(vec a timesvec b)*(vec b timesvec c)+(vec b timesvec c)*(vec c timesvec a)+(vec c timesvec a)*(vec a timesvec b)` can be (A) `(9)/(4),` (B) `-(9)/(4),` (C) `(3)/(4),` (D) `-(3)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (vec B timesvec c)*[vec A times(vec B timesvec C)]=0

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c=0. then find the value of vec a. vec b+ vec b.vec c+ vec c. vec a

For any three vectors a,b\ a n d\ c write the value of vec axx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)dot

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a, vec b and vec c are three non-coplanar unit vectors each inclined with other at an angle of 30^@, then the volume of tetrahedron whose edges are vec a,vec b, vec c is (in cubic units)

For any three vectors veca , vec b , vec c show that vecaxx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)= vec0

If vec a,vec b,vec c are three non-coplanar vectors represented by concurrent edges of a parallelopiped of volume 4, (vec a+vec b)+(vec bxx vec c)+(vec b+vec c).(vec c xx vec a) + (vec c +vec a).(vec axx vec b) is equal to