Home
Class 10
MATHS
If m ne n and (m+n)^(-1)(m^(-1)+n^(-1))=...

If `m ne n` and `(m+n)^(-1)(m^(-1)+n^(-1))=m^xn^y` , show that : `x+y+2=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If m!=n and (m+n)^(-1)(m^(-1)+n^(-1))=m^xn^y then show that x+y+2=0

If (x-y)^(m+n)=x^m.y^n , show that dy/dx=y/x

If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to

If x^(m)*y^(n)=(x+y)^(m+n), show that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n) , prove that : (d^(2)y)/(dx^(2))=0 .

If m and n are +ve integers and m>n and if (1+x)^(m+n)(1-x)^(m-n) is expanded as a polynomial in x ,then the coefficient of x^(2) is