Home
Class 12
MATHS
(i) lim(x->0+) x/|x|...

(i) `lim_(x->0+) x/|x|`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (sin x /x)

Show that ("lim")_(x->0)x/(|x|) does not exist.

Which of the following limits does not exist ?(a) lim_(x->oo) cosec^(-1) (x/(x+7) (B) lim_(x->1) sec^(-1) (sin^(-1)x) (C) lim_(x->0^+) x^(1/x) (D) lim_(x->0) (tan(pi/8+x))^(cotx)

lim_(x->0)x^3cos(2/x) =

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)

If n is a non zero integer and [*] denotes the greatest integer function then lim_(x->0)[nsinx/x] + lim_(x->0)[ntanx/x] equals

Evaluate "lim"_(x->0)(3x+|x|)/(7x-5|x|)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

(lim)_(x->0)(|sin x|)/x is a. 1 b . -1 c. 0 d. none of these

If [dot] denotes the greatest integer function, then find the value of lim_(x->0) ([x]+[2x]++[n x])/(n^2)