Home
Class 12
MATHS
Evaluate : lim( t -> 0 ) ( 1 - cost ) ...

Evaluate :
`lim_( t -> 0 ) ( 1 - cost ) / t^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_( t -> 0 ) tan ( 1 - sint/t )

Evaluate: lim_(x rarr0)(int_(0)^(x)cos t^(2)dt)/(x)

lim_(x rarr0)(t[sin t-t cos t])/(t^(2))

Evaluate lim_(x->t) (x^(2)-t^(2))/(x^(4)-t^(4)

Evaluate the following lim_(t to 1)(1-1/t)/(sin[pi(t-1)])

The value of lim_(t rarr0)(ln(cos(sin t)))/(t^(2)) is

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Evaluate the following limit: (lim)_(x->0)(t a n2x-x)/(3x-sin x)

The value of lim_(x to 0)(1)/(x^(3))(t " In"(1+t))/(t^(4)+4)dt is