Home
Class 12
MATHS
I=int(n+sqrt(n+2))dn...

`I=int(n+sqrt(n+2))dn`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(n)/(sqrt(n-3))dn

int sqrt(a^(2)-n^(2))dn

If I_n=int_0^(sqrt(3))(dx)/(1+x^n),(n=1,2,3. .), then find the value of ("lim")_(nvecoo)I_ndot (a)0 (b) 1 (c) 2 (d) 1/2

int sqrt((1-n)/(1+n))dn

If I_(n)=int x^(n)sqrt(a^(2)-x^(2))dx, prove that I_(n)=-(x^(n-1)(a^(2)-x^(2))^((3)/(2)))/((n+2))+((n+1))/((n+2))a^(2)I_(n-2)

If n is a positive integer and u_(n)=int x^(n)sqrt(a^(2)-x^(2))dx

Find (dr)/(dn) , r=n^(sqrt(n))

I=int(n^2dn)/(sqrt(a^(3)-n^(3)))

Let I_(n)=int(x^(n))/(sqrt(x^(2)+2x+5))dx then I_(n)=(x^(m-1))/(n)sqrt(x^(2)+2x+5)-lambda I_(n-1)-mu I_(n-2) where lambda,mu and m' are involving n' then

If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is