Home
Class 12
MATHS
lim(n->00)[sqrt(n^2+n)-sqrt(n^2+1)]=...

`lim_(n->00)[sqrt(n^2+n)-sqrt(n^2+1)]`=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

The value of lim_(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)) , is