Home
Class 12
MATHS
If x sqrt(1+y)+y sqrt(1+x)=0 Prove that ...

If `x sqrt(1+y)+y sqrt(1+x)`=0 Prove that `(dy)/(dx)`=` -(1)/((1+x)^(2)) `

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y= sqrt(x+y) then prove that (dy)/(dx)=1/(2y-1)

If y=x\ sin^(-1)x+sqrt(1-x^2) , prove that (dy)/(dx)=sin^(-1)x

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If y=sqrt((1-x)/(1+x)) prove that (1-x^2)(dy)/(dx)+y=0

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=sqrt((1-x)/(1+x)), prove that ((1-x^2)dy)/(dx)+y=0

If ysqrt(1-x^2)+xsqrt(1-y^2)=1," prove that "(dy)/(dx)= - sqrt((1-y^2)/(1-x^2))dot