Home
Class 12
MATHS
I=int(x^(2)-1)/(sqrt(x^(2)-1))dx...

`I=int(x^(2)-1)/(sqrt(x^(2)-1))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int((2x-1))/(sqrt(x^(2)-x-1))dx

int(2x-1)/(sqrt(x^(2)-x+1))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

(i) int(x-1)/(sqrt(x^(2)+1))dx

" If "^(I)=int(x^(2))/(sqrt(1+x^(3)))dx

I=int(1)/((x^(2)-1)sqrt(x^(2)+1))dx

int_(1)^(2)(1)/(x sqrt(x^(2)-1))dx=

I=int(1)/((x+1)sqrt(x^(2)-1))dx

int(x+1)/(sqrt(x^(2)+2x+1))dx=

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then