Home
Class 12
MATHS
If y=f(x)=(1-x)/(1+x),x!=1, show that x=...

If `y=f(x)=(1-x)/(1+x),x!=1,` show that `x=f(y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x != 0,-1

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x!=0,1.

If f(x)=(x-1)/(x+1),x!=-1, . then show that f(f(x))=-1/x , prove that x!=0 .

If f(x)=log((1-x)/(1+x)) , show that f(a)+f(b)=f((a+b)/(1+ab))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=1/(f(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=-1/(f(x))

If y = f(x) = (x+2)/(x-1) , x ne1 , then show that x = f(y) .

If f(x)=(4^(x))/(4^(x)+2) , then show that f(x)+f(1-x)=1

If f(x)=x^3-1/(x^3) , show that f(x)+f(1/x)=0.

If f(x) is a real valued and differentaible function on R and f(x+y)=(f(x)+f(y))/(1-f(x)f(y)) , then show that f'(x)=f'(0)[1+t^(2)(x)].