Home
Class 12
MATHS
(dy)/(dx)+y tan x=y^(2)sec x...

`(dy)/(dx)+y tan x=y^(2)sec x`

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of (dy)/(dx)+y tan x=sec x is

The integrating factor of differential equation (dy)/(dx)+y tan x -sec x =0 is

The solution of the differential equation sin 2y (dy)/(dx) +2 tan x cos ^(2) y=2 sec x cos ^(3) y is: (where C is arbitary constant)

The solution of the differential equation sin 2y (dy)/(dx) +2 tan x cos ^(2) y=2 sec x cos ^(3) y is: (where C is arbitary constant)

Solve the following different equation (dy)/(dx)+ y sec x= sec x -tan x

x+y(dy/dx)=2y

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

Find (dy)/(dx) for y=tan^(-1) sqrt(sec^2x/ cosec^2x)

Solve the differential equation : tanx (dy)/(dx) +2y = sec x .

Find (dy)/(dx) if, tan^(-1)(x^2+y^2)=a