Home
Class 12
MATHS
Prove that : If n is a positive integer ...

Prove that : If n is a positive integer and x is any nonzero real number, then prove that
`C_(0)+C_(1)(x)/(2)+C_(2).(x^(2))/(3)+C_(3).(x^(3))/(4)+….+C_(n).(x^(n))/(n+1)=((1+x)^(n+1)-1)/((n+1)x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : If n is a positive integer, then prove that C_(0)+(C_(1))/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1).

Prove that following C_(0)+(3)/(2).C_(1)+(9)/(3).C_(2)+(27)/(4).C_(3)+……+(3^(n))/(n+1).C_(n)=(4^(n+1)-1)/(3(n+1)).

If C_r denotes ""^nC_r then show that C_0 + (C_1)/(2) + (C_2)/(3) x^2 + ………..+ C_n. (x^n)/(n + 1) = ((1 + x)^(n+1) - 1)/((n + 1)x)

Prove that : Prove that (C_(1))/(C_(0))+2.(C_(2))/(C_(1))+3.(C_(3))/(C_(2))+….+n.(C_(n))/(C_(n-1))=(n(n+1))/(2)

Prove that : If n is a positive integer then prove that i) C_(0)+C_(1)+C_(2)+……+C_(n)=2^(n)

Prove the following: C_(0)-(C_(1))/(2)+(C_(2))/(3) - …+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

Prove that C_(0)-(1)/(3)*C_(1)+(1)/(5)*C_(2) - …+(-1)^(n)*(1)/(2n+1)C_(n) =(2^(2n)(n !)^(2))/((2n+1)!)

Prove that : Prove that C_(0)+3.C_(1)+3_(2).C_(2)+……+3^(n).C_(n)=4^(n)

Prove that C_(0)+3.C_(1)+5.C_(2)+….+(2n+1).C_(n)=(2n+2).2^(n-1).

Prove the C_(0)+2.C_(1)+4.C_(2)+8.C_(3)+…+2^(n).C_(n)=3^(n)