Home
Class 12
MATHS
If y = e^(log x) then (dy)/(dx) is...

If `y = e^(log x) ` then `(dy)/(dx)` is

A

`log x - x `

B

`xe^(log x)`

C

1

D

`e^(log x ) log x`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = log t^2 , y = log t^3 , then (dy)/(dx) is

If y= log (tan x) , then dy/dx is:

If y=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

If y = e^(x + 3 log x) prove that dy/dx = x^2 (x+3) e^x

If x^y = e^(x + y) , show that (dy)/(dx) = (log x - 2)/((1 - log x)^2)

If y = log(cose^x) , then dy/dx = ……….

Differentiate the following w.r.t.x. If y^x = e^(y - x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y)

If y=sinx+e^(x), Then find (dy)/(dx) .