Home
Class 10
MATHS
Show that : 1 + tan^2theta = 1/( 1 - si...

Show that :
`1 + tan^2theta = 1/( 1 - sin^2theta )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta

if theta = 45^0 then tan^2 theta + 1/(sin^2 theta)

Prove that (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) - sin^(2) theta

Show : 1 - Sin^4theta = Cos^2theta ( 1 + Sin^2theta )

Show that : (1+ tan theta/2)/(1-tan theta/2) = (1+sin theta)/(cos theta) = tan (pi/4 + theta/2)

If tan (alpha + theta) = n tan(alpha - theta) , show that : (n + 1) sin 2 theta = (n - 1) sin 2alpha .

The numerical value of 1/(1+cot^2 theta) + (3)/(1 + tan^2 theta) + 2 sin^2 theta will be

Show that ((1 + cos theta - sin ^(2) theta)/( sin theta (1 + cos theta ))) = cot theta

If 3cot theta=4 then show that (1-tan^(2)theta)/(1+tan^(2)theta)=(cos^(2)theta-sin^(2)theta)