Home
Class 11
MATHS
If x:a=y:b, then (x^2+a^2)/(x+a)+(y^2+b^...

If `x:a=y:b`, then `(x^2+a^2)/(x+a)+(y^2+b^2)/(y+b)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

2(x/a)+(y/b)=2; (x/a)-(y/b)=4

If x=a sec theta and y=b tan theta find (x^(2))/(a^(2))-(y^(2))/(b^(2))

If (x)/(a)-(y)/(b) tan theta =1 and (x)/(a) tan theta +(y)/(b)=1 , then the value of (x^(2))/(a^(2))+(y^(2))/(b^(2)) is

Area of the region bounded by the curve {(x,y) : (x^(2))/(a^(2)) + (y^(2))/(b^(2)) le 1 le "" (x)/(a) + (y)/(b)} is

STATEMENT-1 : The line y = (b)/(a)x will not meet the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2)) =1, (a gt b gt 0) . and STATEMENT-2 : The line y = (b)/(a)x is an asymptote to the hyperbola.

2a(x+y)-3b(x+y)

If (a+b)x =a and (a+b) y = b then the value of (x^(2)+y^(2))/(x^(2)-y^(2)) is

{:((a^(2))/(x) - (b^(2))/(y) = 0),((a^(2)b)/(x)+(b^(2)a)/(y) = "a + b, where x, y"ne 0.):}

If sinx + siny =a and cos x +cos y =b , show that sin(x+y) = 2ab/(a^(2)+b^(2)) and tan (x-y)/2 = sqrt((4-a^(2) -b^(2))/(a^(2) +b^(2))