Home
Class 12
MATHS
If A=[[2,4],[1,3]], then A^2+2A-4I=?...

If `A=[[2,4],[1,3]]`, then `A^2+2A-4I=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,10,2]], then A^(4)-2^(4)(A-I)=

If A=[[4,2-1,1]] then (A-21)(A-3I)=

Let A=[[2,3],[-1,2]] .Then A^(2)-4A+7I =

If A=[[2,1-4,-2]], then I+2A+3A^(2)+4A^(3)+.........oo equals

Let A=[[4,2],[-1,1]] .Then (A-2I)(A-3I) is equal to

If A={:[(-1,3),(4,5)]:} , then find (A-I)(A-2I).

If A=[(4,2),(-1,1)] , show that (A-2 I) A-3 I) =0

If A=[{:(3,-5),(-1,2):}] then find A^(2)-5A- 4I .

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

"If A" = [{:(1, 2), (1, 3):}] , then find A^(-1) + A . (a) I (b) 2I (c) 3I (d) 4I