Home
Class 12
MATHS
lim(n rarr oo)((n)/(n+1))...

`lim_(n rarr oo)((n)/(n+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(((n)/(n))^(n)+((n-1)/(n))^(n)+......+((1)/(n))^(n)) equals

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)((n+2)!+(n+1)!)/((n+1)!-(n+2)!)

Show that lim_(n rarr oo)((1)/(n+1)+(1)/(n+2)+...+(1)/(6n))=log6

lim_ (n rarr oo) ((n) / (n ^ (2) +1) + (n) / (n ^ (2) +2) + (n) / (n ^ (2) +3) +. .. (n) / (n ^ (2) + n))

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

If L=lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+....+(1)/(5n)) then the value of tan L=

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_ (n rarr oo) [(n!) / (n ^ (n))] ^ ((1) / (n))