Home
Class 12
MATHS
lim(n rarr oo)((3)/(n^(3))sum(r=1)^(n)r^...

`lim_(n rarr oo)((3)/(n^(3))sum_(r=1)^(n)r^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1)/(n^(4))sum_(r=1)^(n)r^(3)=

If f(x) is integrable over [1,], then int_(2)^(2)f(x)dx is equal to lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=n+1)^(2n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r+n)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)f((r)/(n))

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

"lim_(n rarr oo)(1)/(n){sum_(r=1)^(n)e^((r)/(n))}=

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_ (n rarr oo) (1) / (n ^ (4)) sum_ (r = 1) ^ (n) r (r + 2) (r + 4) =

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

lim_(n rarr oo)(sum_(r=1)^(n)r^(1/a)(n^(a-(1)/(a))+r^(a-(1)/(a))))/(n^(a+1))=