Home
Class 10
MATHS
If tan alpha = sqrt3 and tan beta = 1/(s...

If tan `alpha = sqrt3` and tan `beta = 1/(sqrt3)`, then `(alpha + beta)` = __________

A

`0^@`

B

`30^@`

C

`60^@`

D

`90^@`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan (alpha- beta)= (sin 2 beta)/(5-cos 2 beta) , find tan alpha: tan beta .

If sin alpha=15/17 and cos beta=12/13 , find the values of : tan (alpha+beta) .

If 2 tan beta+cot beta= tan alpha , prove that cot beta= 2 tan (alpha-beta) .

Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) If alpha is a root (i) and beta is a root of (ii), then tan alpha + tan beta can be equal to

If alpha and beta satisfying 2 sec2 alpha = tan beta + cot beta , then alpha+beta =

If 2tanalpha=3 tanbeta , show that tan(alpha-beta)=(sin2beta)/(5-cos2beta)

If alpha lies in ll quadrant, beta lies in III quadrant and tan (alpha + beta) gt 0 , then (alpha + beta) lies in... quadrants.

If a tan alpha+b tan beta=(a+b) tan ((alpha+beta)/2) , where alpha ne beta , prove that : a cos beta= b cos alpha .

If sin (alpha+beta)=1, sin (alpha-beta)=1/2 , then tan (alpha+ 2beta). tan (2 alpha+beta) is equal to :

If tan alpha= n tan beta and sin alpha= m sin beta , prove that cos^2 alpha= (m^2-1)/(n^2-1) .