Home
Class 12
MATHS
lim(n rarr oo)([sum(k=1)^(n)k^(2))]/[n^(...

`lim_(n rarr oo)([sum_(k=1)^(n)k^(2))]/[n^(3)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k)/(n^(3)+k) can be expressed as rational (p)/(q) in the lowest form then the value of (p+q), is

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

The value of lim_(n rarr oo)sum_(k=1)^(n)(6^(k))/((3^(k)-2^(k))(3^(k+1)-2^(k+1))) is equal to

Evaluate lim_(n rarr oo)sum_(k=1)^(n)quad (k)/(n^(2)+k^(2))

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k ^ (2)) / (2 ^ (k))

The value of int_(0)^(1)lim_(n rarr oo)sum_(k=0)^(n)(x^(k+2)2^(k))/(k!)dx is:

lim_(n rarr oo)sum_(i=1)^(n)(5)/(n^(3))(i-1)^(2) equals

lim_(n rarr oo)(sum_(r=1)^(n)r^(1/a)(n^(a-(1)/(a))+r^(a-(1)/(a))))/(n^(a+1))=