Home
Class 12
MATHS
lim(n rarr oo)(sum(r=1)^(n)(n)/(2^(r)))...

`lim_(n rarr oo)(sum_(r=1)^(n)(n)/(2^(r)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n rarr oo) (sum_(r=0)^( n) (1)/(2^(r))) .

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.

[lim_(f rarr oo)sum_(r=1)^(n)(2r-1)/(2^(r))" is equal to "],[[(A),1],[(C),3]]

If sum_(r=1)^(n)a_(r)=(1)/(6)n(n+1)(n+2) for all n>=1 then lim_(n rarr oo)sum_(r=1)^(n)(1)/(a_(r)) is

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to

If quad f(x)=lim_(n rarr oo)sum_(r=0)^(n)(tan((x)/(2^(r+1)))+tan^(3)((x)/(2^(r+1))))/(1-tan^(2)((x)/(2^(r+1)))) then lim_(x rarr0)(f(x))/(x) is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)