Home
Class 12
MATHS
lim(n rarr oo)(1)/(n)sum(k=1)^(n)(((k)/(...

`lim_(n rarr oo)(1)/(n)sum_(k=1)^(n)(((k)/(n))^(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

"lim_(n rarr oo)(1)/(n){sum_(r=1)^(n)e^((r)/(n))}=

If f(x) is integrable over [1,], then int_(2)^(2)f(x)dx is equal to lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=n+1)^(2n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r+n)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)f((r)/(n))

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

lim_(n rarr oo)(1)/(n^(4))sum_(r=1)^(n)r^(3)=

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

alpha=lim_(n rarr oo)sum_(i=1)^(n)sum_(j=1)^(i)(j)/(n^(3)), then [(1)/(alpha)-1] is

If lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k)/(n^(3)+k) can be expressed as rational (p)/(q) in the lowest form then the value of (p+q), is

Evaluate lim_(n rarr oo)sum_(k=1)^(n)quad (k)/(n^(2)+k^(2))

The value of lim_(n rarr oo)sum_(k=1)^(n)(6^(k))/((3^(k)-2^(k))(3^(k+1)-2^(k+1))) is equal to