Home
Class 12
MATHS
If f(x ) = x |x| - 1   { -1 < x < 1}   ...

If` f(x ) = x |x| - 1   { -1 < x < 1}`  
then show that f'(x) = 2 |x|

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = |x| then show that f'(2) =1

If y = f(x) = (x+2)/(x-1) , x ne1 , then show that x = f(y) .

If f(x)=(1-x)/(1+x) , xne1 then show that f(1/x)=-f(x)

If f(x)=(x-1)/(x+1) then show that f(1/x)=-f(x) and f(-1/x)=(-1)/f(x)

If f(x) = 2/(2-x) then show that f(f(f(x))) = (2(x-1))/x

If f(x) = (1)/(2x-1) , x ne (1)/(2) , then show that : f(f(x)) = (2x-1)/(3-2x) , x ne (3)/(2)

If f(x)=1/(2x+1),\ x!=-1/2,\ then show that f(f(x))=(2x+1)/(2x+3) , provided that x!=-3/2dot

If f(x)=(x-1)/(x+1), then show that f((1)/(x))=-f(x) (ii) f(-(1)/(x))=(1)/(f(x))

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-(1)/(x) provided that x!=0,1