Home
Class 12
MATHS
lim(n rarr oo)(sum(r=1)^(n)r^2)/(n^(3))...

`lim_(n rarr oo)(sum_(r=1)^(n)r^2)/(n^(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(sum_(r=1)^(n)r^(1/a)(n^(a-(1)/(a))+r^(a-(1)/(a))))/(n^(a+1))=

Which of the following is the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(3))/(r^(4)+n^(4))?

lim_(n rarr oo)sum_(i=1)^(n)(5)/(n^(3))(i-1)^(2) equals

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

Evaluate: lim_(n rarr oo) (sum_(r=0)^( n) (1)/(2^(r))) .

[lim_(f rarr oo)sum_(r=1)^(n)(2r-1)/(2^(r))" is equal to "],[[(A),1],[(C),3]]

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to

If sum_(r=1)^(n)a_(r)=(1)/(6)n(n+1)(n+2) for all n>=1 then lim_(n rarr oo)sum_(r=1)^(n)(1)/(a_(r)) is