Home
Class 12
MATHS
lim(x->00) ( x-sinx) / (x+cosx)=...

`lim_(x->00) ( x-sinx) / (x+cosx)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) (sinx/x) =

Evaluate ("lim")_(x->0) (sinx-2)/(cosx-1)

lim_(xrarr0) (sinx)/(x)= ?

Evaluate lim_(x to 0) (sinx-2)/(cosx-1).

Evaluate lim_(x->pi)(1-sinx/2)/(cosx/2(cosx/4-sinx/4)

Using L'Hospital's rule, evaluate : lim_(x to 0) (x-sinx)/(x^(2)sinx) .

value of lim_(x->0)(1-cos^3x)/(xsinx*cosx) is

lim_(xrarroo) (sinx)/(x)=?

lim_(x->oo)(x^2 - sinx)/(x^2-2)

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)