Home
Class 12
MATHS
Consider the complex number z satisfying...

Consider the complex number `z` satisfying `|z-3|+|z|+|z+3|=12` and `|z|<=a` and `|z|>b` ,then find the sum of (minimum integral value of a) + (maximum integral value of b)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the complex number z satisfying R e(z^2 =0),|z|=sqrt(3.)

Find the complex number z satisfying R e(z^2) =0,|z|=sqrt(3.)

Let z be a complex number satisfying |z+16|=4|z+1| . Then

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|

The complex number z satisfies z+|z|=2+8i . find the value of |z|-8

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

Let complex number z satisfy |z - 2/z| =1 " then " |z| can take all values except

If z is a complex number satisfying |z|^(2)-|z|-2 lt 0 , then the value of |z^(2)+zsintheta| , for all values of theta , is

For the complex number z satisfying the condition |z+(2)/(z)|=2 , the maximum value of |z| is