Home
Class 12
MATHS
The minimum value of f(x)=a^(a^(x))+a^(1...

The minimum value of `f(x)=a^(a^(x))+a^(1-a^(x))` ,where a,`x in R` and `a>0` ,is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the minimum value of f(x)=x^x .

The minimum value of 3^(x)+3^(1-x), x in R

Write the minimum value of f(x)=x+1/x ,\ \ x >0

The minimum value of f(x)=|x-1|+|x-2|+|x-3| is equal to

Minimum value of the function f(x)= (1/x)^(1//x) is:

The minimum value of the fuction f(x)=2|x-2|+5|x-3| for all x in R , is

If f(x)=9x-x^(2) , x in R , then f(a+1)-f(a-1) is equal to

The value of int_1^2 {f(g(x))}^(-1)f'(g(x))g'(x) dx , where g(1)=g(2), is equal to

Find the maximum and the minimum values of f(x)=x^3+1 for all x in R , if any.

if f(x) = x-[x], in R, then f^(')(1/2) is equal to