Home
Class 12
MATHS
9. lim(x->oo) x/e^x...

9. `lim_(x->oo) x/e^x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) xsin(2/x)

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

lim_(x->oo) (sinx/x) =

lim_(x -> oo) x^n / e^x = 0 , (n is an integer) for

Solve lim_(x->oo)(e^x-e^-x)/(e^x-e^-x)

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

The value of lim_(x->oo)(a x^2+b x+c)/(dx+e)(a , b , c , d , e in R-{0}) depends on the sign of :

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a) logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

lim_(x->oo)2^xsin(a/2^x)