Home
Class 12
MATHS
lim(n->oo) (1/2)...

`lim_(n->oo) (1/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) n^(1/n)

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

Find a for which lim_(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+(na+2)+...+(na+n)])=1/60

f'(0) = lim_(n->oo) nf(1/n) and f(0)=0 Using this, find lim_(n->oo)((n+1)(2/pi)cos^(- 1)(1/n)-n)),|cos^(-1)1/n|

Evaluate the following limit: (lim)_(n->oo)(1/(n^2)+2/(n^2)+3/(n^2)++(n-1)/(n^2\ ))

lim_(n->oo) nsin(1/n)

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

Prove that lim_(n->oo)(1+1/n)^n=e