Home
Class 12
MATHS
lim(n->oo) [ 1^2/n^3 + 2^2/n^3 + ...... ...

`lim_(n->oo) [ 1^2/n^3 + 2^2/n^3 + ...... + n^2/n^3]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

Let alpha=lim_(n->oo)((1^3-1^2)+(2^3-2^2)+.....+(n^3-n^2))/(n^4), then alpha is equal to :

Lim_(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+1/n * sec^2 1]

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

lim(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

lim_(n rarr oo)2^(1/n)

lim_(n->oo)sin(x/2^n)/(x/2^n)