Home
Class 10
MATHS
Show that : Sin( A + B ) = sqrt( 1 - ...

Show that :
`Sin( A + B ) = sqrt( 1 - Cos^2( A + B )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Sin (A + B) = 1/(sqrt2) Cos(A - B) = (sqrt3)/2

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

By taking A = 90^@ and B = 30^@ , show that sin (A - B) = sin A cos B-cos A sin B.

Find A and B, if sin(A + 2B) = sqrt(3)/2 , and cos(A + B) = 1/2

If = 60^(@) and B=30^(@) , then show that : sin A cos B+ cos A sin B= sin (A+B)

In a !ABC , sin A + sin B + sin C = 1+ sqrt2 and ,cos A +cos B +cos C = sqrt2 if ,the triangle is