Home
Class 12
MATHS
tan^-1(2/5)-tan^-1(1/3)=?...

`tan^-1(2/5)-tan^-1(1/3)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that- tan^-1(1/2)+tan^-1(1/5)+tan^-1(1/8)=pi/4

Show that: tan^-1 1 +tan^-1 2+tan^-1 3=2(tan^-1 1+tan^-1 (1/2)+tan^-1 (1/3))

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

tan^(-1)(1/3)+tan^(-1)(1/5)=(1)/(2)cos^(-1)(33/65)

tan^(-1)2-tan^(-1)1=tan^(-1)(1)/(3)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

The value of tan[sin^(-1) (3/5)+tan^(-1) (2/3)] is