Home
Class 12
MATHS
The range of function f(x)=cot^(-1)x+sec...

The range of function `f(x)=cot^(-1)x+sec^(-1)x+cosec^(-1)x` is (pi)/(2) pi)uu(pi (3 pi)/(2) O ((pi)/(2)*(3 pi)/(4) uu (5 pi)/(4)*(3 pi)/(2)) O ((pi)/(2) pi)uu(pi (3 pi)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Range of function f(x)=cot^(-1)(2x-x^2), is (a) [pi/4,(3pi)/2] (b) [0,pi/4] [0,pi/2] (d) [pi/4,pi]

The minimum value of the function f(x)=x^(10)+x^2+1/(x^(12))+1/((1+sec^(-1)x) is (1) (pi+4)/(pi+1) (2) (3pi+4)/(pi+1) (3) (pi+4)/(3pi+1) (4) 3

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (a) (pi/4,(3pi)/4) (b) [pi/4,(3pi)/4] (c) {pi/4,(3pi)/4} (d) none of these

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

Range of the function : f(x)=log_2((pi+2sin^(- 1)((3-x)/7))/pi)

The value of int_(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

The domain of the function f(x) = log_(3/2) log_(1/2)log_pi log_(pi/4) x is

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)