Home
Class 11
MATHS
Find lim(n rarr oo)((n)/(n+1))^(n)...

Find `lim_(n rarr oo)((n)/(n+1))^(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(n rarr oo)(1+(1)/(n))^(n)

Lt_(n rarr oo)(1+(1)/(n))^(n)

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

lim_(x rarr oo)((log x)/(x^(n)))

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)

lim_(n rarr oo)((n+1)^(4)-(n-1)^(4))/((n+1)^(4)+(n-1)^(4))

lim_(n rarr oo)(2^(n+1)+3^(n+1))/(2^n+3^n) equals (A)2 (B)3 (C)5 (D)0