Home
Class 12
MATHS
Find d/dx(2^(cosx).e^(sinx))...

Find `d/dx(2^(cosx).e^(sinx))`

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)(x^(2) + cosx)^(4) =

d/dx(sinx^2)=?

Find the differentiation of (e^(2x)cosx)/(xsinx) w.r.t. \ x

d/(dx)(e^xlogsin2x)=

(d)/(dx)(sin{2cos^(-1)(sinx)}]=

If l_(1)=(d)/(dx)(e^(sinx)) l_(2)lim_(hto0) (e^(sin(x+h))-e^(sinx))/(h) l_(3)=inte^(sinx)cosxdx then which one of the following is correct?

l_(1)=(d)/(dx)(e^(tanx)) l_(2)=lim_(h to 0)(e^(sin(x+h)-e^(sinx)))/(h) l_(3)=inte^(sinx)cosxdx , then which one of the following is correct ?

Differentiate each of the following with respect to x in following question: (x^(2)"cos"(pi)/4)/(sinx)

(d)/(dx)((logx)/(x^(2)))=