Home
Class 12
MATHS
tan^(-1)x=cos^(-1)((1)/(sqrt(1-x^(2))))....

`tan^(-1)x=cos^(-1)((1)/(sqrt(1-x^(2))))`. Find x

Promotional Banner

Similar Questions

Explore conceptually related problems

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=

Prove that cos[tan^(-1){sin(cos^(-1)x)}]=(1)/(sqrt(2-x^(2)))

If tan^(-1)x-cot^(-1)x=tan^(-1)(1)/(sqrt(3)) find the value of x.

Prove that tan^(-1)((x)/(sqrt(a^(2)-x^(2))))="sin"^(-1)(x)/(a)=cos^(-1)((sqrt(a^(2)-x^(2)))/(a)) .

tan ^(-1)(cos sqrt(x))

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

Prove that sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((x+1)/(sqrt(x^(2)+2x+2)))=tan^(-1)(x^(2)+x+1)

Prove that: quad tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove the following: tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in(0,1)

Find the differential coefficient of (tan^(-1))(x)/(sqrt((1-x^(2))))w*r.t*cos^(-1)(2x^(2)-1)