Home
Class 12
MATHS
Find lim(x->oo) 1/e^x...

Find `lim_(x->oo) 1/e^x`

Promotional Banner

Similar Questions

Explore conceptually related problems

find lim_(x->0) (e^(x+3)-e^3)/x

lim_(x->oo)[sinx/x]

lim_(x->oo) (sinx/x) =

lim_(x->oo)sinx/x =

lim_(x -> oo) x^n / e^x = 0 , (n is an integer) for

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

Solve lim_(x->oo)(e^x-e^-x)/(e^x-e^-x)

Evaluate the following limit: (lim)_(x->oo)(a^(1//x)-1)x

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

If lim_(x -> oo) (1 + a/x + b/x^2)^(2x)= e^2 then the values of a and b, are