Home
Class 12
MATHS
dy/dx=(1+y^2)/(1+x^2)...

`dy/dx=(1+y^2)/(1+x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation xy(dy)/(dx)=(1+y^(2))(1+x+x^(2))/(1+x^(2))

The solution of the differential equation xy(dy)/(dx)=((1+y^(2))(1+x+x^(2)))/(1+x^(2)) is:

The solution of the DE (dy )/(dx) + sqrt ((1 -y ^(2))/( 1- x ^(2))) = 0 is

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

Solve the following differential equations (dy)/(dx)=sqrt((1-y^2)/(1-x^2)) .

The differential equation (dy)/(dx) = (x(1+y^(2)))/(y(1+x^(2)) represents a family of

(dy)/(dx)+(x)/(1+x^(2))y=(1)/(2x(1+x^(2)))