Home
Class 12
MATHS
The range of the function f(x)=tan^(-1)x...

The range of the function `f(x)=tan^(-1)x+cot^(-1)x` is (a) `[-(pi)/(2),(pi)/(2)],` (b) `[0,pi],` (c) `[0,(pi)/(2)],` (d) `{(pi)/(2)}`

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=int_(-1)^(1)(sin xdt)/((1-2t cos x+t^(2))is) (a) [-(pi)/(2),(pi)/(2)]( b) [0,pi](c){0,pi}(d){-(pi)/(2),(pi)/(2)}

The range of function f(x)=cot^(-1)x+sec^(-1)x+ cosec^(-1)x is (A) [(pi)/(2), pi)uu(pi, (3 pi)/(2)] (B) ((pi)/(2), (3 pi)/(4)] uu [(5 pi)/(4), (3 pi)/(2)) (C) ((pi)/(2), pi)uu(pi ,(3 pi)/(2)) (D) ((pi)/(2), (3 pi)/(2))

[" The range of the function "f(x)=sin^(-1)((sqrt(1+x^(4)))/(1+5x^(10)))" is "],[[[-(pi)/(2)*(pi)/(2)]],[0[(pi)/(3)*(pi)/(2))],[0(0,(pi)/(2)]]]

Range of function f(x)=arccot(2x-x^(2)) is [(pi)/(4),(3 pi)/(3)](b)[0,(pi)/(4)][0,(pi)/(2)] (d) [(pi)/(4),pi]

If the range of the function F(x)=tan^(-1)(3x^(2)+bx+c) is [0,(pi)/(2)) (domain in R) then :

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0

The range of the function tan^(-1)((x^(2)+1)/(x^(2)+sqrt(3))),x in R is [(pi)/(6),(pi)/(2)) b.[(pi)/(6),(pi)/(3)) c.[(pi)/(6),(pi)/(4)] d.none of these

Range of function f(x)=|6sin^(-1)x-pi|+|6cos^(-1)x-pi| is ( a )[0,9 pi](b)[0,3 pi](c)[pi,3 pi](d)[pi,9 pi]

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (-(pi)/(2),(pi)/(4))(b)(0,(pi)/(2))(-(pi)/(2),(pi)/(2))(d)((pi)/(4),(pi)/(2))

Range of tan^(-1)((2x)/(1+x^(2))) is (a) [-(pi)/(4),(pi)/(4)] (b) (-(pi)/(2),(pi)/(2))(c)(-(pi)/(2),(pi)/(4)) (d) [(pi)/(4),(pi)/(2)]