Home
Class 12
MATHS
If y=secx+tanx then prove that (d^2y)/(d...

If `y=secx+tanx` then prove that `(d^2y)/(dx^2)=(cosx)/(1-sinx)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=5cosx-3sinx then prove that (d^2y)/(dx^2)+y=0

If y=(tan x+secx) , prove that (d^(2)y)/(dx^(2))=(cosx)/((1-sinx)^(2))

Solve: (d^2y)/dx^2=cosx-sinx

If y=5cosx-3sinx , prove that (d^2y)/(dx^2)+y=0 .

If y=secx*tanx then dy/dx=

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

If y=(1-tanx)/(1+tanx) , prove that (dy)/(dx)=(-2)/(1+sin2x) .

If y=sin(sinx) then prove that (d^2y)/(dx^2)+tanx. (dy)/(dx)+y cos^2x=0

If y=sec x-tanx ,show that (cosx)(d^(2)y)/(dx^(2))=y^(2).

If y=2sinx+3cosx , prove that : y+(d^(2)y)/(dx^(2))=0